Uncovering the mysteries of the universe at its most fundamental level has been a longstanding goal for physicists around the world. Neutrinos, the elusive particles that interact through gravity and the weak nuclear force, have presented a unique challenge due to their scarcity in detection. Despite being the second most abundant particle in the universe,
Physics
The collaboration between research staff from the Charles University of Prague, the CFM (CSIC-UPV/EHU) center in San Sebastian, and CIC nanoGUNE’s Nanodevices group has resulted in the design of a groundbreaking complex material with emerging properties in the realm of spintronics. This discovery, which has been documented in the prestigious journal Nature Materials, has paved
The world of quantum physics has always been known for its complexity and chaotic nature. However, recent research led by Professor Monika Aidelsburger and Professor Immanuel Bloch from the LMU Faculty of Physics suggests that even chaotic quantum many-body systems can be described macroscopically through simple diffusion equations with random noise. This study, published in
Researchers at ETH Zurich have made a groundbreaking discovery in the field of wave propagation, specifically focusing on sound waves. In the past, sound waves were known to travel in both forward and backward directions, hindering the effectiveness of certain technical applications. However, a team of researchers led by Nicolas Noiray has developed a method
Quantum computing is an incredibly promising field with the potential to revolutionize the way we process information and solve complex problems. However, one of the biggest challenges facing the development of quantum computers is the issue of error correction. In a recent publication in Science Advances, Hayato Goto from the RIKEN Center for Quantum Computing
The field of physics is constantly evolving, with researchers pushing the boundaries of what we know about the universe. One recent study conducted by RIKEN physicists has shed light on the potential of twisted graphene layers when subjected to magnetic fields. This discovery opens up a new realm of possibilities for exploring exotic physics. Graphene,
Quantum error correction has emerged as a crucial area of research as scientists delve into the potential of quantum computing to revolutionize problem-solving and expand our comprehension of the universe. The quest for enhancing the accuracy and reliability of quantum computers is paramount as researchers investigate their practical applications in fundamental science and future technologies.
Researchers from various institutions have recently made a breakthrough in the field of quantum physics by demonstrating the spontaneous formation and synchronization of multiple quantum vortices in optically excited semiconductor microcavities. The study, which has been published in Science Advances, sheds light on the behavior of polariton quantum vortices in structured artificial lattices. The experiment
Particle accelerators have played a critical role in advancing scientific research, enabling breakthroughs in various fields. Traditional accelerator facilities, which can span kilometers in length, have been essential in producing high-energy particle beams. However, the emergence of laser-plasma accelerators has introduced a new era of compact and efficient particle sources that have the potential to
Einstein’s theory of relativity is built upon two fundamental assumptions. The first assumption is that the laws of physics are consistent for all observers moving in a straight line with no acceleration. This concept, known as an “inertial frame of reference,” was inspired by the work of Dutch physicist Hendrik Lorentz in the late 1800s.
The field of quantum computing continues to push boundaries and open up new possibilities in research and technology. Researchers from the National University of Singapore (NUS) have made significant strides in simulating higher-order topological (HOT) lattices using digital quantum computers. These complex structures hold promise for understanding advanced quantum materials with robust properties sought after
A recent study conducted by the Controlled Molecules Group at the Fritz Haber Institute has shaken the foundations of molecular physics. Led by Dr. Sandra Eibenberger-Arias, the team achieved near-complete separation of quantum states in chiral molecules, a remarkable feat that challenges existing beliefs and opens up new avenues for research in this field. Chiral
Researchers from Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory, and Deutsches Elektronen-Synchrotron have made significant strides in improving the reliability of equation of state measurements in static compression experiments. This breakthrough, published in the Journal of Applied Physics, introduces a new sample configuration that allows for measurements in a pressure regime previously unattainable with
The manipulation of microscopic particles such as electrons is crucial for the advancement of quantum information technology. Cornell University researchers have recently delved into the realm of utilizing acoustic sound waves to control the motion of electrons as they orbit lattice defects in diamonds. This groundbreaking technique showcases the potential to enhance the sensitivity of
Simulating particles in a controlled environment is a relatively simple task when those particles are perfectly spherical. However, in reality, most particles do not conform to such ideal shapes. They come in irregular and varying shapes and sizes, which poses a significant challenge in accurately simulating their behavior. Understanding the interactions and behaviors of these